UBICOMP/ISWC 15 ADJUNCT, SEPTEMBER 7-11, 2015, OSAKA, JAPAN

EyeDroid: An Open Source Mobile

Gaze Tracker on Android for
Eyewear Computers

Shahram Jalaliniya Daniel Garcia Garcia

IT University of Copenhagen IT University of Copenhagen
Rued Langgaards Vej 7 Rued Langgaards Vej 7

2300 Copenhagen S, Denmark 2300 Copenhagen S, Denmark
jsha@itu.dk dgac@itu.dk

Diako Mardanbegi

IT University of Copenhagen
Rued Langgaards Vej 7

2300 Copenhagen S, Denmark
dima@itu.dk

loannis Sintos

IT University of Copenhagen
Rued Langgaards Vej 7

2300 Copenhagen S, Denmark
isin@itu.dk

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.

Ubicomp/ISWC '15 Adjunct, September 07-11, 2015, Osaka, Japan

(©2015 ACM. ISBN 978-1-4503-3575-1/15/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2800835.2804336

873

Abstract

In this paper we report on development and evaluation of
a video-based mobile gaze tracker for eyewear computers.
Unlike most of the previous work, our system performs all
its processing workload on an Android device and sends
the coordinates of the gaze point to an eyewear device
through wireless connection. We propose a lightweight
software architecture for Android to increase the efficiency
of image processing needed for eye tracking. The
evaluation of the system indicated an accuracy of 1.06
degrees and a battery lifetime of approximate 4.5 hours.

Author Keywords

Gaze tracking; Eyewear computer; Android; Google Glass

ACM Classification Keywords
H.5.2. [Information interfaces and presentation: User
Interfaces|: Input devices and strategies

Introduction

By emerging new generation of unobtrusive eyewear
computers, such as Google Glass! and Vuzix smart glass?,
it seems feasible that eventually these eyewear devices
play role in everyday tasks. Due to the special form factor
of eyewear devices, the delay between intention and action

Lhttps : //developers.google.com/glass/
2http : [/ /www.vuziz.com/consumer /productsm, 100/

is very short compared to other mobile devices[10]. This
opens new opportunities for eyewear computers to be used
more on the move and in parallel with real world tasks.
However, mobile interaction with eyewear devices is still
challenging. For example, in a mobile scenario, sometimes
hands of the user are busy with a manual activity, or the
user might be doing a visually demanding task. This
means the eyewear device needs to provide several
channels for interaction to support users in different
situations. State of the art eyewear devices already
support for head gesture input, voice commands, and
touch-based gestures. Eye gaze has also been studied as
an input modality for head-mounted displays [3].
However, due to the technical limitations, gaze-based
interaction is not still supported by state of the art
eyewear devices. One of the main challenges is the fact
that the image processing required for gaze tracking is
extremely complex and power demanding. Unfortunately,
this computational demand is very far from what can be
accomplished on existing eyewear devices such as Google
Glass. In this paper, we investigate the possibility of using
an Android smartphone to process eye images captured by
a head-mounted camera to calculate the gaze coordinates
for an eyewear computer.

Related Work

Most of the recent mobile gaze trackers use a laptop in
user's backpack [5, 6] or a remote computer [9, 1] to
analyze the eye image and calculate gaze coordinate. The
dependency of gaze tracking systems to a local or remote
computer decreases the mobility of users. There are also
some commercial products from companies such as
EyeTribe3, Tobii*, and Umoove® which support eye

3https : / /theeyetribe.com/
4http : / /www.tobii.com/
Shitp : //www.umoove.me/

874

UBICOMP/ISWC 15 ADJUNCT, SEPTEMBER 7-11, 2015, OSAKA, JAPAN

tracking on mobile and wearable devices. But the
commercial mobile gaze trackers are usually so expensive
and hard to afford. That is the reason why some of the
recent studies have tried to use cheap and small processors
such as Raspberry Pi [2] and micro-controllers [7] for eye
tracking. Ferhat et.at [2] have presented a cheap eye
tracking solution running on a Raspberry Pi device. They
based their work on the open source Opengazer [8]. The
average gaze estimation error of their system is about
1.4° for an image size of 640 x 480 pixels with the frame
rate of 3Hz. Although their system was running on a
small device, it was only tested on a stationary setup for
gaze tracking on a computer screen. A more relevant
work to our paper is the iShadow eye tracker by Mayberry
et.al [7] that focuses on head-mounted gaze tracking.
They have presented a fully mobile eye tracking solution
using a low-power ARM Cortex M3 micro-controller.

Streaming
gaze data to
the Glass

Figure 1: A schematic view of the system Architecture.

WORKSHOP

EYEDROID CORE

COMPOSITE 1

rgb2gray () ERODE-
IROI Prediction () DILATION
USB CAMERA
RECEIVER] -
THRESHOLD
)

0 COMPOSITE 2
CONTROLLER

() ERODE-
C) DILATION
g STECNT)IER =)] COMPOSITE 3

PUPIL BLOB
DETECTION DETECTION

Figure 2: EyeDroid software arcgitecture. Eye tracking
algorithm inside the core is decomposed into steps (filters) and
connected by pipes (arrows). Each composite is executed on a
separate thread.

The focus of the iShadow system was mainly
implementing a very efficient video-based eye tracking
approach that can run on a small micro-processor. They
achieved real-time gaze tracking in an image captured by
a front-view camera and they have reported an error of
about 3 degrees for their system. Since in eyewear
computers the display size is very small (less than 15
degrees), the accuracy of the eye tracker should be higher
to provide a graceful interaction. In this paper, to achieve
a higher accuracy in eye tracking (about 1 degree), we
rely on the processing capacity of commonly used mobile
devices. The proposed eye tracker on mobile device is an
open-source affordable solution for gaze tracking on
eyewear computers.

System Architecture
The proposed system comprises two main components:
(1) our gaze tracking application (EyeDroid) running as a

875

server on an android smartphone, and (2) the client
application on Google Glass (GlassGaze)®. A schematic
view of the system architecture is represented in Figure 1.

EyeDroid: Gaze Tracker Server on Android
Hardware

The hardware requirements in the current implementation
of the EyeDroid eye tracker are an Android mobile device
(minimum API level 15) and a head mounted USB 2.0
infrared camera connected directly to the Android phone
through a USB cable. The first hardware prototype of the
EyeDroid is shown in Figure 5. The recommended camera
resolution is 640x480 pixels. Because the Android
platform does not provide support to connect an external
USB camera, the operating system needs to own root
access to the phone and use customized camera video
drivers. To develop the EyeDroid gaze tracker, open
source third party drivers are used [4].

Software Architecture

The software architecture of the EyeDroid application is
designed based on pipes and filters design pattern. This
architecture helped us test different algorithm
configurations easily during system development. Also in
the EyeDroid software platform we built and used Java
Lightweight Processing Framework (JLPF)” (Figure 3) as
an external library. This design allows for a fully
configurable algorithm in terms of decomposability and
scheduling of the steps for execution on the available
processing resources, instead of a monolithic algorithm
that would perform poorly. Finally, in order to divide the
algorithm in steps of equal execution time, the composite
pattern was implemented to allow composition of
individual steps (see Figure 2). Since performance is a

Shttps : //github.com/centosGit/GlassGaze
Thttps : //github.com/centosGit/JLPF

critical issue, we used the Android NDK support for C++
instead of the regular Android SDK for java. This allowed
the algorithm code to run directly on the processing
resources and access system libraries directly, unlike Java
which would run on a virtual machine.

10

IOController

<<interface>>
I0Protocol
<<interface>> <<interface>>
(o] 10l i

IORWDefaultimpl k J J

Scheduler
ProcessingCore
/\

[ThreadPool ‘

‘“
/\
1 | 1

BlockingPipe TimeOutPipe PollingPipe

<<interface>> <<interface>>
OutputWriter IntputReader

Core

Sequential

[Tl\veadPerFll(er

Computable

Figure 3: Java Lightweight Processing Framework (JLPF)
software architecture

Gaze tracking method

In order to achieve real-time image processing, we have
skipped detecting cornea reflection in the image which
could compensate for the small movements of the camera
relative to the eye. Only the pupil center obtained from

876

UBICOMP/ISWC 15 ADJUNCT, SEPTEMBER 7-11, 2015, OSAKA, JAPAN

the eye image is used for gaze estimation. Pupil detection
is done by applying a simple blob detection algorithm on
the eye image as follow: (step 1) The image is first
converted to grey-scale (step 2) and then a morphological
operation is done on the resulting image. (step 3) Then a
threshold was applied at a constant level of around 70.
(step 4) After thresholding, a morphological operation is
done on the image before applying blob detection (4). To
reduce the computation time, in each frame, we have
defined a region of interest (ROI) for which the image
processing is applied for. In the first frame, the ROI will
be defined as the entire image. Once the pupil is found on
previous processed frames, the ROl is reduced to 30% of
the image size and is moved to the most recently
computed pupil coordinates (the last frame whose
processing is completed).

Calibration

In the current implementation of the system, a
homography transformation is used as our gaze mapping
function. The mapping function is obtained from a
calibration process consisting of a minimum of 4
calibration markers on the display.

GlassGaze: Gaze Tracker Client on Google
Glass

GlassGaze [1] is an android app developed for Google
Glass that was originally developed to work as a client for
the open-source Haytham gaze tracker [1]. GlassGaze
provides a convenient user interface that can be controlled
by voice and finger gesture. This client has an Android
background service that receives the gaze data from the
server and allows different applications, to subscribe to its
messages. This background service also allows
applications on Glass to communicate with the gaze
tracking server. By applying the same messaging protocol

WORKSHOP

defined in the GlassGaze we could easily use this app as
our client.

Figure 4: Pupil detection steps

System Performance

Accuracy of the Gaze Tracker

To measure the accuracy of our gaze tracker we
conducted an experiment with 10 participants recruited
among students from our university. Participants were
asked to wear the Google Glass and run the GlassGaze
application. First, we had a training session in which they
tried the system for a while until they felt comfortable
with the system. We started the experiment with a
four-point calibration. After calibration, 15 markers were
displayed randomly on the Google Glass display for one
second. The participants were asked to look at the
markers immediately after marker appearance (see Figure
5). We had 15 markers distributed evenly in 3 rows and 5
columns (Figure 6).

877

Figure 5: A participant perfomring the task.

To measure the gaze coordinate, the average coordinate
of the gaze for the last 700 milliseconds of looking at each
marker was calculated. The average of deviation from
actual marker position was equal to 52.61 pixels with
standard deviation of 35.26 pixels. This means that the
error of our gaze tracking system is equal to 1.06 degrees.
The distribution of the error for each marker is illustrated
in Figure 6. The X and Y dimensions of the graph in
Figure 6 represent two dimensions of the display on
Google Glass (maximum 640 x 320), and the gray circles
around each marker show the average error of the
detected gaze point for each marker.

250

200

150

Y
(pixel)

Error
area

100

50

0 100 200 300 400 500 600

X (pixel)

Figure 6: The average error of the gaze estimation for each
marker (dots) is illustrated by circles around the markers

Battery Life

To calculate the battery life of the mobile device (a brand
new LG-G2 smartphone with 2 GB RAM, a Quad-core
2.26 GHz Krait 400 processor, an Adreno 330 GPU and
running Android 4.4 version) while running the EyeDroid
application, we measured the charge of the battery (given
by the Android built-in battery level indicator) every hour
for 3 hours. To compensate the inaccuracy of the built-in
indicator, the device was fully charged before conducting
each experiment, any other apps were closed but default
Android services, and the brightness of the screen was
minimized. Each measurement was repeated three times
and results were averaged.

878

UBICOMP/ISWC 15 ADJUNCT, SEPTEMBER 7-11, 2015, OSAKA, JAPAN

Cumulative energy consumption (%) - Y |
100%

80%

60% EO/Video enabled
W O/Video disabled
OYouTube--WiFi

OHill Climb Racing

40%

- W
0% L

1 2 3

Time (hours) - X

Figure 7: Comparison between EyeDroid and two other
popular applications showing cumulative energy consumption
(%) per hour

Since EyeDroid can optionally show the resulting
coordinates drawn in top of the input video streamed on
the device display, two different experiments were
conducted. First in the video preview enabled mode and
second when the preview mode is disabled. To have a
baseline for our comparison, the battery life of the device
running two other popular applications was measured in
the same way: YouTube video streaming and Hill
Climbing racing game. The results suggest that EyeDroid
behaves similar to Hill Climbing game but deviating
approximately 10% per hour. The maximum battery life
estimation running EyeDroid with in
preview-disabled-mode is approximately 4.5 hours.

Discussion & Conclusion

In this paper we presented a monocular mobile gaze
tracker on Android smartphone to support gaze-based
interaction with eyewear devices. We used an efficient and
lightweight software architecture to divide image
processing task into parallel threads. Using our approach,
we reached to 6.41 fps performance in the image
processing task. The experimental study showed the

WORKSHOP

accuracy of 1.06 degree for our gaze tracker. The error
areas (gray zones) around each marker in the Figure 6
show that our gaze tracker can be used for interaction
with Google Glass since users are able to accurately point
to (at least) 15 different objects on the display. Although,
the head gear was fixed on the head, small movements of
the camera relative to the eye could create a relatively
large error in the gaze tracking result. This was due to the
fact that gaze mapping was using only pupil center. As
future work, we will add glint detection to increase
robustness of the system.

Acknowledgments
This work was supported by the EU Marie Curie Network
iCareNet under grant number 264738.

References

[1] Haytham gaze tracker.
http://itu.dk/research/eye/, June 2014.

[2] Ferhat, O., Vilarino, F., and Sénchez, F. A cheap
portable eye-tracker solution for common setups.
Journal of Eye Movement Research 7, 3 (2014), 2.

[3] Jalaliniya, S., Mardanbeigi, D., Pederson, T., and
Hansen, D. Head and eye movement as pointing
modalities for eyewear computers. In BSN
Workshops, 2014 11th International Conference on
(June 2014), 50-53.

[4] Lab, K. Usage of usb webcam with customized
galaxy nexus (android 4.0.3). http:
//brain.cc.kogakuin.ac.jp/research/usb-e.html

[5] Li, D., Babcock, J., and Parkhurst, D. J. openeyes:

879

[6]

[7]

(8]

[9]

[10]

A low-cost head-mounted eye-tracking solution. In
Proceedings of the 2006 Symposium on Eye Tracking
Research &Amp,; Applications, ETRA '06, ACM
(New York, NY, USA, 2006), 95-100.

Lukander, K., Jagadeesan, S., Chi, H., and Miiller,
K. Omg!: A new robust, wearable and affordable

open source mobile gaze tracker. In Proceedings of
the 15th International Conference on
Human-computer Interaction with Mobile Devices
and Services, MobileHCI '13, ACM (New York, NY,
USA, 2013), 408—411.

Mayberry, A., Hu, P., Marlin, B., Salthouse, C., and
Ganesan, D. ishadow: Design of a wearable,
real-time mobile gaze tracker. In Proceedings of the
12th Annual International Conference on Mobile
Systems, Applications, and Services, MobiSys 14,
ACM (New York, NY, USA, 2014), 82-94.

Nel, E., MacKay, D., Zielinski, P., Williams, O., and
Cipolla, R. Opengazer: open-source gaze tracker for
ordinary webcams.

Rantanen, V., Vanhala, T., Tuisku, O., Niemenlehto,
P., Verho, J., Surakka, V., Juhola, M., and Lekkala,
J. A wearable, wireless gaze tracker with integrated
selection command source for human
x2010;computer interaction. Information Technology
in Biomedicine, IEEE Transactions on 15, 5 (Sept
2011), 795-801.

Starner, T. Project glass: An extension of the self.
Pervasive Computing, IEEE 12, 2 (April 2013),
14-16.

http://itu.dk/research/eye/
http://brain.cc.kogakuin.ac.jp/research/usb-e.html
http://brain.cc.kogakuin.ac.jp/research/usb-e.html

	Introduction
	Related Work
	System Architecture
	EyeDroid: Gaze Tracker Server on Android
	Hardware
	Software Architecture
	Gaze tracking method
	Calibration

	GlassGaze: Gaze Tracker Client on Google Glass
	System Performance
	Accuracy of the Gaze Tracker
	Battery Life

	Discussion & Conclusion
	Acknowledgments
	References

